CutFEM topology optimization of 3D laminar incompressible flow problems
نویسندگان
چکیده
This paper studies the characteristics and applicability of the CutFEM approach [1] as the core of a robust topology optimization framework for 3D laminar incompressible flow and species transport problems at low Reynolds number (Re < 200). CutFEM is a methodology for discretizing partial differential equations on complex geometries by immersed boundary techniques. In this study, the geometry of the fluid domain is described by an explicit level set method, where the parameters of a level set function are defined as functions of the optimization variables. The fluid behavior is modeled by the incompressible Navier-Stokes equations. Species transport is modeled by an advection-diffusion equation. The governing equations are discretized in space by a generalized extended finite element method. Face-oriented ghost-penalty terms are added for stability reasons and to improve the conditioning of the system. The boundary conditions are enforced weakly via Nitsche’s method. The emergence of isolated volumes of fluid surrounded by solid during the optimization process leads to a singular analysis problem. An auxiliary indicator field is modeled to identify these volumes and to impose a constraint on the average pressure. Numerical results for 3D, steady-state and transient problems demonstrate that the CutFEM analyses are sufficiently accurate, and the optimized designs agree well with results from prior studies solved in 2D or by density approaches.
منابع مشابه
The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملNumerical Simulation of the Incompressible Laminar Flow Over a Square Cylinder
Simulation of fluid flow over a square cylinder can be performed in order to understand the physics of the flow over bluff bodies. In the current study, incompressible laminar flow over a confined square cylinder, with variable blockage factor has been simulated numerically, using computational fluid dynamics (CFD). The focus has been on vortex-induced vibration (VIV) of the cylinder. Vorticity...
متن کامل3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1702.02473 شماره
صفحات -
تاریخ انتشار 2017